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ABSTRACT 

 Quasiharmonic Lattice Dynamics is a simulation technique complementary to 

Monte Carlo and Molecular Dynamics. Quantum effects are readily taken into account, 

and high precision does not normally require long runs. Vibrational stability is a 

sensitive test of interatomic potentials, and details of the vibrational motion reveal 

mechanisms for phase transitions or for thermal expansion. The major computational 

task is usually to find the equilibrium geometry at given T, P; this done, calculating free 

energy, heat capacity, thermal expansion, etc., is rapid and accurate. For three 

dimensional ionic crystals and slabs, our code SHELL calculates analytically first 

derivatives of the free energy with respect to all strains, internal as well as external; this 

gives a full minimisation of the free energy so efficient that large unit cells can be used, 

allowing applications to defects and disordered systems. 

 Various applications are discussed: MgF2 including the rutile/fluorite transition; 

negative thermal expansion in ZrW2O8; anisotropic expansion of polyethylene at very 

low temperatures; surface free energies for MgO; defect energies and volumes in MgO; 

and a new method for obtaining free energies and phase diagrams of disordered solids 

and solid solutions, applied to MnO/MgO and CaO/MgO. 

 

KEY WORDS: defects; free energy minimisation; lattice dynamics; low temperatures; 

solid solutions; thermal expansion. 
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1. INTRODUCTION 

 Quasiharmonic lattice dynamics (QLD) is a relatively inexpensive technique, 

which avoids the kinetic barriers and critical slowing-down effects suffered by Monte 

Carlo (MC) and molecular dynamics (MD), and has the advantage that free energies and 

derived properties such as entropy and heat capacity can be calculated directly to high 

precision. QLD also gives a sensitive test for interatomic potentials in that imaginary 

phonon frequencies may indicate at once that a trial potential is invalid. The main 

disadvantage is that QLD is valid only when vibrational amplitudes are fairly small, and 

so other techniques must be used at high temperatures as melting is approached. We 

first outline the technique, as applied by our recent code SHELL [1], and then present 

the set of illustrative examples listed in the Abstract. 

2. THEORETICAL METHODS 

 Our new code SHELL [1] uses both lattice statics and QLD, and is designed for 

the efficient study of solids and slabs with periodic structures and many internal strains. 

In its present form two- and three-body potentials represent short-range forces. Ionic and 

polarizability effects are taken into account by using the well-known shell model, in 

which each ion consists of a massive ‘core’ and massless ‘shell’; both core and shell are 

charged, and so their relative displacement produces an electric dipole. 

 For structure optimisation, we minimise the free energy using its strain 

derivatives. Most previous work has used the zero static internal stress approximation 

(ZSISA), or minor variations thereof, in which only external coordinates (dimensions of 

the unit cell) are relaxed using fully dynamic free energy derivatives, while internal 

coordinates (positions of the ions in the unit cell) are relaxed using static energy 

derivatives. The static energy derivatives are easy to calculate analytically and the small 
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number of external free energy derivatives are obtained numerically. ZSISA gives 

optimised external coordinates correctly to first order [2], but to get correct internal 

coordinates requires a full minimisation of the free energy with respect to all 

coordinates; and even for moderately sized unit cells to do this by numerical 

differentiation is normally prohibitively expensive. SHELL therefore adopts a method 

suggested for complex ionic crystals by Kantorovich [3], and calculates the full set of 

free energy first derivatives analytically; this makes possible a valid treatment of the 

atomic positions within the unit cell. 

 For optimisation at an applied pressure Pext we minimize the ‘availabilty’ [4] 

~
G =F+PextV with respect to all strains. In QLD the Helmholtz free energy, F, at 

temperature T is the sum of static and vibrational contributions: 

F T F T( , ) ( ) ( , )� � �= +Φstat vib      

where � denotes the full set of strain variables, comprising both external (ηλ) and 

internal (εk) strains. Φstat is thus the potential energy of the static lattice in a given state 

of strain �. Traditional static lattice simulations evaluate only Φstat and its strain 

derivatives. 

 Fvib is the sum of harmonic vibrational contributions from all the normal modes 

of vibration, and for a periodic structure is given by:  

( )[ ]{ }F h k T h k Tj B j B
j

vib = + − −∑ 1
2 1ν ν( ) ln exp ( ) /

,

q q
q

   

in which the first term is the zero-point energy. The frequencies νj(q) of modes with 

wavevector q are obtained by diagonalising the dynamical matrix D(q) [5] which is a 

function of the strain �. The strain derivatives are given by  
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where �’ denotes that all the � are kept constant except for the differentiation variable 

�A. SHELL uses first-order perturbation theory to derive ( ( ) )∂ν ∂j A
2 q �

�
/  from analytic 

expressions for ( )∂ ∂D A�
�

/ . Details and full expressions are given in refs. 6, 7, and 8. 

A variable metric method [9] is used to minimise F+PextV with respect to the �A. The 

static energy Hessian, (∂2Φstat/∂�A∂�B) is used as an approximation to (∂2F/∂�A∂�B) in 

the first step; in subsequent iterations the (∂F/∂�A) are calculated in the new 

configuration and the inverse Hessian updated. 

 The reliability of QLD at high temperatures can be investigated by comparison 

with classical MC or MD simulations. For ionic solids we have found that QLD is 

usually valid up to about one-half to two-thirds of the melting point. 

3. APPLICATIONS 

3.1 MgF2 

 Our simplest example is the rutile phase of MgF2, which has a small unit cell 

with only one internal degree of freedom. The potentials are derived from a calculated 

Hartree-Fock (HF) potential energy hypersurface [10]. We have carried out not only 

QLD, but also MD and MC simulations for comparison. The last two used a simulation 

cell containing 192 Mg and 384 F ions arranged initially in a box of sides 4x4.52 Å, 

4x4.52 Å and 6x3.09 Å. In the MC simulations, the thermodynamic data were collected 

over 107 steps after a 107 step equilibration. 

 HF theory generally overestimates lattice parameters, and for MgF2 the HF 

lattice parameters a and c are slightly larger than experiment [11]. For the new potential 
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obtained by fitting to HF energies, a is too small by about 0.3% and c too large by about 

4% (Fig. 1). However, the variation with T of a and c is close to experiment. Below the 

Debye temperature (ΘD) the MC values for a and c are slightly lower than the QLD 

values, because only QLD takes account of quantum effects (largely zero-point 

vibration) which expand the lattice by a small amount. The MC and MD results are in 

good agreement. Around ΘD the QLD results are in good agreement with MC and MD, 

but for T ≥ 1300 K they diverge, a characteristic indication that the quasiharmonic 

approximation is starting to fail. 

 Simulations are a valuable means of examining widely used quantities for which 

data are sparse. For example, one key quantity in geophysics is the isothermal 

Anderson-Grüneisen function, δT, and its variation with pressure, 

TPTT VVB )ln/ln()ln/ln( ∂β∂−=∂∂−=δ      

where β is the volumetric thermal expansion coefficient (= ( / ) /∂ ∂V T VP ) and BT the 

isothermal bulk modulus. For the rutile phase of MgF2 over its entire pressure range, we 

find that β is approximately proportional to Vt  at 300 K, where t≈7, so giving δT a 

constant value of 7. For the fluorite phase adopted at high pressure [10], in contrast, δT 

decreases with pressure from ≈5.7 at the transition to ≈4.7 at 80 GPa. 

3.2 Negative Thermal Expansion – ZrW2O8 

 ZrW2O8. exhibits large negative thermal expansion [12,13] from 0.3 K to 

1050 K; at 428 K there is a transition to a disordered phase, but the ordered phase 

provides an excellent test of our methods. The unit cell is cubic and comprised of WO4 

tetrahedra sharing corners and ZrO6 octahedra linked in such a way that each octahedron 

shares corners with six different WO4 tetrahedra. Each WO4 tetrahedron shares only 
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three of its four oxygens with adjacent ZrO6 octahedra. 

 Our QLD calculations for ZrW2O8 are analogous to those for MgF2. For the 

intra-octahedron O-Zr-O and intra-tetrahedron O-W-O interactions, we used a Urey-

energy term E k r r= −−
1
2

2( )O O e , where rO-O is the O-O distance and re a constant, rather 

than an angle term. The calculated linear thermal expansion coefficient α (= β/3) over 

the range 50 K-300 K is -3.5x10-6 K-1 (experiment ≈-8.3x10-6 K-1 [13]). 

 To understand why this type of cubic structure has negative thermal expansion, 

we recall the thermodynamic relation TT BVS /)/( ∂∂=β . Since BΤ is always positive, β 

and (∂S/∂V)T have the same sign. (∂S/∂V)T is negative for ZrW2O8 largely due to the Zr-

O-W transverse vibrations, which increase in frequency with increasing Zr-W 

internuclear separation (cf. the transverse vibrations of a stretched violin string). This 

tension effect [14] predominates, in general, only in open structures. A useful and 

related treatment in terms of “rigid unit modes” has been given by Pryde et al. [15]. 

 At pressures over 0.2 GPa, cubic ZrW2O8 undergoes a phase transition to a 

denser orthorhombic phase [16]. In this less open structure, both calculated and 

observed expansion coefficients are negative and an order of magnitude smaller than for 

the cubic phase. 

3.3 Very low temperatures – polyethylene 

 At low temperatures CP and expansion coefficients αλ are very small, tending to 

zero as T→0; but they can be measured down to ≈1 K or lower by sensitive techniques 

[17,18].  Such measurements give information about low energy levels and their strain 

dependence.  At these temperatures MC and MD cannot simulate CP and αλ, but the 

analytical methods of QLD obtain them to high precision if increasingly fine grids are 
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used for integrating over q as q=0 is approached [19]. 

 We have applied QLD to short-range models of orthorhombic polyethylene [20]. 

The unit cell has 3 external and 6 internal degrees of freedom.  Zig-zag polymer chains 

run in the c-direction, interacting weakly with neighbouring chains, so that c33 is much 

larger than c11 or c22; αc is therefore small, and negative because of the tension effect in 

the C-C bonds.  Above 100 K, X-ray diffraction shows that αa and αb are positive, with 

αa about double αb. At low temperatures dilatometric measurements on drawn samples 

show that the mean of αa and αb remains positive, but do not give separate values.  All 

our models indicate that below about 10 K the anisotropy between αa and αb is greatly 

reduced or even reversed, largely due to a ‘rotational tension’ effect [14] that rotates 

bonds in crystals of low symmetry. 

3.4 Surface free energies 

 We have used full minimisation of the free energy to study the {001} and {110} 

surfaces of MgO, using a well-established set of shell-model potentials [21]. Our 

strategy differs from the two-region strategy commonly used for static calculations 

[22,23]. We consider a slab, infinite in two directions and finite in the other. For a thick 

enough slab the two faces are essentially noninteracting and can be taken as free 

surfaces. 

 Fig. 2 shows the calculated temperature dependence of the surface energies. 

About 10 layers give convergence to 0.001 J m-2, more then twice the number of layers 

needed for the static energy to converge. Both surface energies decrease with 

temperature, the {110} rather more markedly. Imaginary frequncies appear at ≈1600 K 

for the {110} surface, ≈2600 K for the {001} surface, and ≈2900 K for the bulk, 
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indicating that QLD fails at lower T for the surfaces than for the bulk, due possibly to 

surface modes with large amplitude of vibration. It is tempting to suggest that surface 

melting occurs at temperatures below the bulk melting temperature (3100 K). Ref. 8 

contains results for a wider range of oxide surfaces. 

3.5 Defect energies and defect volumes – Ba2+ in MgO 

 A large Ba2+ substituted for Mg2+ in MgO distorts the lattice greatly. Our 

detailed study of the defect free energies, enthalpies and volumes over the range 0-

1500 K, based on the full minimisation of all strains, has been given previously [24]. 

 A superlattice of defects is introduced throughout the macroscopic crystal. The 

periodicity is then of the superlattice; the supercell contains many atoms whose 

equilibrium positions are not wholly determined by symmetry, but are described by a set 

of dimensionless internal strain coordinates εk. Defect properties, denoted by lower case 

letters (e.g., gp denotes the change in Gibbs free energy at constant pressure) can then be 

computed both at constant pressure and at constant volume; e.g., 

{ }f f V T F V T F V T Ndc pc dv v= = −( , ) ( , ) ( , ) / ; { }g g P T G P T G P T Np p dc pc d= = −( , ) ( , ) ( , ) /  

Subscripts dc and pc denote ‘defect crystal’ and ‘perfect crystal’ respectively, and 

quantities in capital letters are free energies (F,G) of the macroscopic crystal; Nd is the 

total number of defects in the macroscopic crystal. No account therefore is taken here of 

the configurational entropy of randomly positional defects in the lattice; this is 

asymptotically correct for a single isolated defect and convergence towards properties of 

an isolated defect occurs as the superlattice spacing is increased. 

 To calculate fv, the external strain is kept constant while the internal degrees of 

freedom are varied to give the equilibrium configuration at temperature T. Similarly, for 
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gp, both external and internal strains are varied to be consistent with the specified 

pressure. uv and hp are determined from the terms that contribute to fv and gp. The 

volume of formation of the defect, vp, follows immediately from the minimisation of 

F+PextV. 

 Fig. 3 shows hp(T) and uv(T) vs. T, for a supercell of 216 ions containing one 

Ba2+. hp is always greater than uv above T = 0; in the isolated defect limit [25] 

h u Tp T p− =v v( / )β χ , where vp is the defect volume. Here both β and vp are positive. 

The T-dependence of uv is much larger than that of hp and opposite in sign. The results 

confirm the traditional assumption [25,26] that uv(0) and uv(static) are fair 

approximations to hp(T). uv(static) is a better approximation when T D> Θ . While the 

high temperature values of uv extrapolate back towards uv(static), this is not true of hp. 

Where, as here, the thermodynamic quantity of interest is determined by the relatively 

small difference between two large quantities (hp ≈ 16 eV, cf. an enthalpy of ≈ 4400 eV 

for a supercell of 216 ions), the high precision of the lattice dynamics approach is 

particularly valuable. 

3.6 Solid Solutions 

 Disorder in polar solids has largely been investigated theoretically via point 

defect calculations (the dilute limit), or, as in the previous section, via supercells. These 

methods are not readily extended to mixtures or disordered systems with a finite 

impurity or defect content. Instead, we have developed a configurationally averaged 

lattice dynamics approach to solid solutions [27], which evaluates an appropriate 

thermodynamic average over a (limited) set of calculations for different configurations 

of cations within a supercell. If Gk is the optimised free energy of configuration k, the 
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enthalpy and entropy of the solid solution are approximated by 

< >=
−∑

−∑
H

H G k T

G k T

k k B
k

k B
k

exp( / )

exp( / )
, < >= < > + −∑S

H

T
k G k TB k B

k
ln exp( / )   

 Fig. 4 shows values of ∆Hmix for MnO/MgO obtained in this way with a unit cell 

of 64 atoms and 32 randomly-chosen cation arrangements. The interionic potentials 

were taken from ref. 28. The cell size and the number of cation arrangements is 

sufficient to give convergence in ∆Hmix to 0.1 kJ mol-1. There is excellent agreement 

(Fig. 4) between QLD and a novel Monte Carlo exchange (MCX) technique also 

developed by us for solid solutions [29]. The enthalpy of mixing at 1300 K is symmetric 

with a maximum ≈5.4 kJ mol-1 (50% MgO, 50% MnO). Agreement with the 

experimental data of Gripenberg et al. [30] is good; we do not see the asymmetry 

reported by Raghavan [31]. The calculated value of ∆Hmix varies only slightly with 

temperature. The failure of the mean field (MF) approximation shows that local 

structural relaxation or clustering is important. 

 QLD is particularly useful for quantities such as entropies of mixing since free 

energies are obtained so readily. ∆Smix includes both configurational and vibrational 

contributions; no assumptions are made about the ideality of the solid solution. Thus 

calculated entropies of mixing for CaO/MgO (for mole fractions of CaO less than 0.15) 

show that ∆Smix is larger than the “ideal” value; as with the isolated Ba defect in MgO 

the vibrational contribution is positive. This work is currently being extended to ∆Gmix 

and so to phase diagrams. 

4. CONCLUSIONS 

 QLD is an economical and precise tool not only for the bulk, but also surfaces, 
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defects and solid solutions. New methods, such as explicit free energy minimisation of a 

large number of configurations, can deal with high defect levels and increase 

considerably the contact between experiment and theory in many areas of materials and 

solid-state research. Future applications include calculating ceramic and minerological 

data (e.g., phase diagrams), possibly at high pressure, and kinetic and mechanistic 

aspects of solid state reactions.  Codes for ionic solids and metals (using the embedded 

atom model) are available from the authors. 

 Many properties are highly sensitive to the interionic potentials. In recent years 

improved potentials have been obtained by fitting to ab initio calculations, but in the 

long run, with increasing computer power, it may be better to develop direct ab initio 

MD and QLD techniques. 
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FIGURE CAPTIONS 

Fig. 1 

Calculated values of a and c for MgF2, with experimental data from ref. 11. 

Fig. 2 

Calculated surface energies for MgO. 

Fig. 3 

Temperature variation of hp (◊) and uv (+) for a supercell containing 216 ions. uv(0) and 

uv(static) are also shown. 

Fig. 4 

Calculated values of ∆Hmix at 1000 K for MnO/MgO given by configurational lattice 

dynamics (QLD), exchange Monte Carlo (MCX) and mean field theory (MF). Two sets 

of experimental data are also shown (RG from ref. 30, GP from ref. 31). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 

 

 

 

 

 


